基于语义的图像检索 科学出版社 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线

基于语义的图像检索 科学出版社精美图片
》基于语义的图像检索 科学出版社电子书籍版权问题 请点击这里查看《

基于语义的图像检索 科学出版社书籍详细信息

  • ISBN:9787030494900
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2016-09
  • 页数:暂无页数
  • 价格:57.80
  • 纸张:胶版纸
  • 装帧:平装-胶订
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看

寄语:

新华书店正版,关注店铺成为会员可享店铺专属优惠,团购客户请咨询在线客服!


内容简介:

本书针对基于高层语义的图像检索的关键技术环节进行了介绍和论述。主要内容:(1)基于语义的图像检索技术的研究背景,以及图像特征提取,图像相似度度量,图像语义学习等各关键环节经典和现有算法的综述介绍;(2)基于作者提出的一个基于区域的语义图像检索算法,阐述了如何实现基于语义的图像检索,如何提取有效的图像数字特征,如何从图像数字特征提取图像语义,(3)将将所提出的基于语义的图像检索算法用于网络图像检索的改进,描述了其应用价值。


书籍目录:

Preface

List of Abbreviations

Chapter 1 Introduction

1.1 Background

1.1.1 The 'Semantic Gap

1.1.2 Query by Keywords

1.2 Objectives

1.3 Contributions of this Book

1.3.1 Identifying Existing Semantic Learning Techniques

1.3.2 Designing Effective Feature Extraction Methods for Arbitrary-Shaped Regions"

1.3.3 High-Level Concept Learning Using Decision Tree

1.3.4 Applying RBIR with Semantics to Web Image Search

1.4 Organization of the Book

Chapter 2 Key Techniques in Semantic-Based Image Retrieval

2.1 Introduction

2.2 Techniques and Issues in Region-Based Image Retrieval

2.2.1 Image Segmentation

2.2.2 Low-Level Image Feature Extraction

2.2.3 Similarity Measure

2.2.4 Test Database and Performance Evaluation

2.3 High-Level Image Semantic Learning Techniques

2.3.1 Object-Ontology

2.3.2 Machine Learning

2.3.3 Relevance Feedback (RF)

2.3.4 Semantic Template

2.3.5 Fusion of Multiple Resources for Web Image Search

2.3.6 Deep Learning

2.3.7 Summary of Existing Techniques in Image Semantic Learning

2.4 Research Problems Addressed in this Book

Chapter 3 Deriving Image Semantics from Color Features

3.1 Introduction

3.2 Region Color Feature Extraction and Semantic Color Naming

3.2.1 Region Color Features

3.2.2 Semantic Color Names

3.3 Image Retrieval using Semantic Color Names

3.3.1 RBIR with Semantic Color Names

3.3.2 Feature Normalization

3.3.3 Image Similarity Measure using EMD

3.4 Results and Analysis

3.4.1 Test Database and Performance Evaluation Model

3.4.2 Comparison of Different Color Features

3.4.3 Performance of the Proposed Color Naming Method

3.4.4 Image Retrieval with Color Names, Region Color Features and Global

Color Features

3.5 Discussion and Conclusions

Chapter 4 Effective Texture Feature Extraction from Arbitrary-Shaped

Regions

4.1 Introduction

4.2 Deriving Texture Features from Arbitrary-Shaped Regions

4.2.1 Projection onto Convex Set (POCS) Theory

4.2.2 Extracting Region Texture Features Using POCS-ER

4.2.3 Theoretical Analysis of POCS-ER

4.2.4 Implementation of POCS-ER

4.3 POCS-ER on Brodatz Textures

4.3.1 Illustration of POCS-ER Process

4.3.2 Performance of POCS-ER Measured by PSNR

4.3.3 Performance of POCS-ER Measured by Retrieval Performance

4.4 POCS-ER for Real-World Image Retrieval

4.4.1 Experimental Setups

4.4.2 Performance of Different Texture Feature Extraction Methods in RBIR...

4.4.3 RBIR with Color, Texture, Color & Texture

4.4.4 Comparison of Region Features and Global Features in Image Retrieval

4.5 Conclusions and Discussion

Chapter 5 Deriving High-Level Image Concepts Using Decision Tree

Learning

5.1 Introduction

5.2 Decision Tree Learning

5.2.1 Overview

5.2.2 Decision Tree Induction for Image Semantic Learning

5.3 The Proposed Decision Tree Induction Algorithm DT-ST

5.3.1 Semantic Template Construction

5.3.2 Image Feature Discretization

5.3.3 Decision Tree Induction

5.4 Results and Analysis

5.4.1 Selection of Pre-pnming Threshold

5.4.2 Pruning Unknowns

5.4.3 Handling Queries with Concepts outside the Training Concept Set

5.4.4 Comparison of DT-ST with ID3 and C4.5

5.5 Region-Based Image Retrieval with High-Level Semantics

5.6 Discussion

5.6.1 Scalability of DT-ST

5.6.2 The Advantage of Image Retrieval with High-Level Concepts

5.7 Conclusions

Chapter 6 Application of Semantic-Based RBIR to Web Image Search

6.1 Introduction

6.2 The False Filtering Algorithm

6.3 Results and Analysis

6.3.1 Web Image Collection and Performance Evaluation

6.3.2 Experimental Results

6.4 Discussions

6.4.1 Integration

6.4.2 FF Response Time

6.4.3 Scalability

6.5 Conclusions

Chapter 7 Conclusions and Future Work

7.1 Conclusions of this Book

7.2 Future Research Directions

Bibliography

Appendix A HSV Color Histogram and HSV-RGB Conversion

Appendix B Tamura Texture Features

Appendix C lllustration of POCS-ER Process Using ZR and MP

Appendix D Pre-pruning &Post-pruning in DT-ST


作者介绍:

暂无相关内容,正在全力查找中


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

暂无其它内容!


书籍真实打分

  • 故事情节:7分

  • 人物塑造:6分

  • 主题深度:5分

  • 文字风格:8分

  • 语言运用:7分

  • 文笔流畅:4分

  • 思想传递:9分

  • 知识深度:7分

  • 知识广度:9分

  • 实用性:8分

  • 章节划分:9分

  • 结构布局:9分

  • 新颖与独特:5分

  • 情感共鸣:3分

  • 引人入胜:8分

  • 现实相关:9分

  • 沉浸感:6分

  • 事实准确性:7分

  • 文化贡献:9分


网站评分

  • 书籍多样性:6分

  • 书籍信息完全性:9分

  • 网站更新速度:7分

  • 使用便利性:3分

  • 书籍清晰度:7分

  • 书籍格式兼容性:6分

  • 是否包含广告:5分

  • 加载速度:3分

  • 安全性:7分

  • 稳定性:8分

  • 搜索功能:7分

  • 下载便捷性:8分


下载点评

  • 情节曲折(276+)
  • 在线转格式(632+)
  • 推荐购买(275+)
  • 章节完整(344+)
  • 赞(489+)
  • 愉快的找书体验(544+)
  • 内容齐全(640+)
  • 中评(152+)
  • 快捷(134+)
  • 体验满分(399+)
  • 图文清晰(225+)

下载评价

  • 网友 瞿***香:

    非常好就是加载有点儿慢。

  • 网友 宓***莉:

    不仅速度快,而且内容无盗版痕迹。

  • 网友 益***琴:

    好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。

  • 网友 师***怡:

    说的好不如用的好,真心很好。越来越完美

  • 网友 步***青:

    。。。。。好

  • 网友 方***旋:

    真的很好,里面很多小说都能搜到,但就是收费的太多了

  • 网友 通***蕊:

    五颗星、五颗星,大赞还觉得不错!~~

  • 网友 权***颜:

    下载地址、格式选择、下载方式都还挺多的

  • 网友 辛***玮:

    页面不错 整体风格喜欢

  • 网友 后***之:

    强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!

  • 网友 陈***秋:

    不错,图文清晰,无错版,可以入手。


随机推荐